The mathematical structure of multiphase thermal models of flow in porous media

نویسندگان

  • John B. Bell
  • Franck Monmont
  • Nikolaos Nikiforakis
چکیده

This article is concerned with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow in porous media. The fluid model consists of individual chemical component (species) conservation equations, Darcy’s law for volumetric flow rates and an energy equation in terms of enthalpy. The model is closed with an equation of state and phase equilibrium conditions that determine the distribution of the chemical components into phases. It is shown that, in the absence of diffusive forces, the flow equations can be split into a system of hyperbolic conservation laws for the species and enthalpy and a parabolic equation for pressure. This decomposition forms the basis of a sequential formulation where the pressure equation is solved implicitly and then the component and enthalpy conservation laws are solved explicitly. A numerical method based on this sequential formulation is presented and used to demonstrate some typical flow behaviour that occurs during fluid injection into a reservoir.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Modeling of Multiphase Flow in Porous Media

The simultaneous flow of immiscible fluids in porous media occurs in a wide variety of applications. The equations governing these flows are inherently nonlinear, and the geometries and material properties characterizing many problems in petroleum and groundwater engineering can be quite irregular. As a result, numerical simulation often offers the only viable approach to the mathematical model...

متن کامل

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

Impact of Internal Structure on Foam Stability in Model Porous Media

Application of foam in EOR, increases macroscopic sweep efficiency via awesome increscent of mobility control. Macroscopic manifestation of foam application performance in porous media is complex process that involves several interacting microscopic foam events. Stability as an important factor in foam injection within large reservoirs, depends on several variables including oil saturation, con...

متن کامل

An Estimation of Multiphase Relative Permeabilities in Reservoir Cores from Micro-CT Data

With significant increase of tomographic equipment power, demand for Prediction relative permeability prediction Predicting in porous media from digital image data. In this work, it is predicted three -phase relative permeabilities with co-applying Darcy’s and Stokes equations in two case studies, namely Bentheimer sandstone and Estaillades limestone which their micro-CT data files were downloa...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008